Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming

Boolean networks (and more general logic models) are useful frameworks to study signal transduction across multiple pathways. Logic models can be learned from a prior knowledge network structure and multiplex phosphoproteomics data. However, most efficient and scalable training methods focus on the comparison of two time-points and assume that the system has reached an early steady state. In th...

متن کامل

Boolean Network Identification from Multiplex Time Series Data

Boolean networks (and more general logic models) are useful frameworks to study signal transduction across multiple pathways. Logical models can be learned from a prior knowledge network structure and multiplex phosphoproteomics data. However, most efficient and scalable training methods focus on the comparison of two time-points and assume that the system has reached an early steady state. In ...

متن کامل

Learning restricted Boolean network model by time-series data

Restricted Boolean networks are simplified Boolean networks that are required for either negative or positive regulations between genes. Higa et al. (BMC Proc 5:S5, 2011) proposed a three-rule algorithm to infer a restricted Boolean network from time-series data. However, the algorithm suffers from a major drawback, namely, it is very sensitive to noise. In this paper, we systematically analyze...

متن کامل

Time Series Perturbation by Genetic Programming

This paper presents a new algorithm that combines perturbation theory and genetic programming for modeling and forecasting real-world chaotic time series. Both perturbation theory and time series modeling have to build symbolic models for very complex system dynamics. Perturbation theory does not work without well-defined system equation. Difficulties in modeling time series lie in the fact tha...

متن کامل

Inferring Regulatory Networks from Time Series Expression Data and Relational Data Via Inductive Logic Programming

Determining the underlying regulatory mechanism of genetic networks is one of the central challenges of computational biology. Numerous methods have been developed and applied to the important but complex task of reverse engineering regulatory networks from highthroughput gene expression data. However, many challenges remain. In this paper, we are interested in learning rules that will reveal t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biosystems

سال: 2016

ISSN: 0303-2647

DOI: 10.1016/j.biosystems.2016.07.009